

# Friday 17 June 2016 – Afternoon

# AS GCE MATHEMATICS

4728/01 Mechanics 1

# **QUESTION PAPER**

Candidates answer on the Printed Answer Book.

#### OCR supplied materials:

- Printed Answer Book 4728/01
- List of Formulae (MF1) Other materials required:

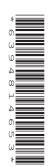
Duration: 1 hour 30 minutes

## INSTRUCTIONS TO CANDIDATES

Scientific or graphical calculator

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer **Book.** If additional space is required, you should use the lined page(s) at the end of the Printed Answer Book. The question number(s) must be clearly shown.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by  $g \text{ m s}^{-2}$ . Unless otherwise instructed, when a numerical value is needed, use g = 9.8.


### INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

## INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.



- 1 A stone is released from rest on a bridge and falls vertically into a lake. The stone has velocity  $14 \text{ m s}^{-1}$  when it enters the lake.
  - (i) Calculate the distance the stone falls before it enters the lake, and the time after its release when it enters the lake. [4]

The lake is 15 m deep and the stone has velocity  $20 \,\mathrm{m \, s}^{-1}$  immediately before it reaches the bed of the lake.

- (ii) Given that there is no sudden change in the velocity of the stone when it enters the lake, find the acceleration of the stone while it is falling through the lake. [3]
- 2 A particle *P* is projected down a line of greatest slope on a smooth inclined plane. *P* has velocity  $5 \text{ m s}^{-1}$  at the instant when it has been in motion for 1.6 s and travelled a distance of 6.4 m. Calculate
  - (i) the initial speed and the acceleration of *P*,(ii) the inclination of the plane to the vertical.[3]
- 3 Two forces each of magnitude 4 N have a resultant of magnitude 6 N.
  - (i) Calculate the angle between the two 4N forces. [4]

The two given forces of magnitude 4N act on a particle of mass mkg which remains at rest on a smooth horizontal surface. The surface exerts a force of magnitude 3N on the particle.

(ii) Find *m*, and give the acute angle between the surface and one of the 4N forces. [3]

4



Four particles A, B, C and D are on the same straight line on a smooth horizontal table. A has speed  $6 \text{ m s}^{-1}$  and is moving towards B. The speed of B is  $2 \text{ m s}^{-1}$  and B is moving towards A. The particle C is moving with speed  $5 \text{ m s}^{-1}$  away from B and towards D, which is stationary (see diagram). The first collision is between A and B which have masses 0.8 kg and 0.2 kg respectively.

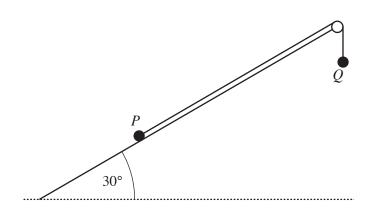
(i) After the particles collide A has speed  $4 \text{ m s}^{-1}$  in its original direction of motion. Calculate the speed of B after the collision. [4]

The second collision is between C and D which have masses 0.3 kg and 0.1 kg respectively.

(ii) The particles coalesce when they collide. Find the speed of the combined particle after this collision.

[3]

The third collision is between B and the combined particle, after which no further collisions occur.


(iii) Calculate the greatest possible speed of the combined particle after the third collision. [4]

- 3
- 5 Three forces act on a particle. The first force has magnitude PN and acts horizontally due east. The second force has magnitude 5N and acts horizontally due west. The third force has magnitude 2PN and acts vertically upwards. The resultant of these three forces has magnitude 25N.
  - (i) Calculate *P* and the angle between the resultant and the vertical. [7]

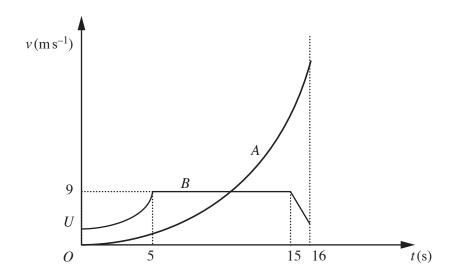
The particle has mass 3 kg and rests on a rough horizontal table. The coefficient of friction between the particle and the table is 0.15.

(ii) Find the acceleration of the particle, and state the direction in which it moves. [5]

6



Two particles P and Q are attached to opposite ends of a light inextensible string which passes over a small smooth pulley at the top of a rough plane inclined at 30° to the horizontal. P has mass 0.2 kg and is held at rest on the plane. Q has mass 0.2 kg and hangs freely. The string is taut (see diagram). The coefficient of friction between P and the plane is 0.4. The particle P is released.


(i) State the tension in the string before P is released, and find the tension in the string after P is released. [6]

Q strikes the floor and remains at rest. P continues to move up the plane for a further distance of 0.8 m before it comes to rest. P does not reach the pulley.

|  | (ii) Find the speed of the particles immediately before Q strikes the floor. | [5] |
|--|------------------------------------------------------------------------------|-----|
|--|------------------------------------------------------------------------------|-----|

(iii) Calculate the magnitude of the contact force exerted on *P* by the plane while *P* is in motion. [3]

Question 7 begins on page 4.



The diagram shows the (t, v) graphs for two particles A and B which move on the same straight line. The units of v and t are ms<sup>-1</sup> and s respectively. Both particles are at the point S on the line when t = 0. The particle A is initially at rest, and moves with acceleration  $0.18t \text{ m s}^{-2}$  until the two particles collide when t = 16. The initial velocity of B is  $U \text{ m s}^{-1}$  and B has variable acceleration for the first five seconds of its motion. For the next ten seconds of its motion B has a constant velocity of  $9 \text{ m s}^{-1}$ ; finally B moves with constant deceleration for one second before it collides with A.

- (i) Calculate the value of *t* at which the two particles have the same velocity. [4]
- For  $0 \le t \le 5$  the distance of *B* from *S* is  $(Ut + 0.08t^3)$  m.
- (ii) Calculate U and verify that when t = 5, B is 25 m from S. [4]

[5]

(iii) Calculate the velocity of B when t = 16.

#### **END OF QUESTION PAPER**



#### **Copyright Information**

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

| Que | estion | Expected Answer                                            | Mark       | Rationale/Additional Guidance                                         |
|-----|--------|------------------------------------------------------------|------------|-----------------------------------------------------------------------|
| 1   | 1      | $14^2 = 2gh$                                               | M1         | $v^2 = u^2 + -2gs$ with $u = 0$                                       |
|     |        | h = 10  m                                                  | A1         | -ve final answer A0                                                   |
| 1   |        | 14 = gt                                                    | M1         | v = u + gt with $u = 0$                                               |
|     |        | t = 1.43 s                                                 | A1         | Accept 10/7                                                           |
|     |        | OR                                                         | [4]        |                                                                       |
|     |        | 14 = qt                                                    | <u> M1</u> | There are many alternatives, but following through of                 |
|     |        | t = 1.43 s                                                 | A1         | wrong answer is allowed only for method marks as the                  |
|     |        | $h = 0x1.43 + 9.8x1.43^2/2$                                | M1         | <i>h</i> and <i>t</i> values can be found independently.              |
|     |        | h = 10(.0)  m                                              | A1         |                                                                       |
|     |        |                                                            |            |                                                                       |
|     | ii     |                                                            | M1         | $v^2 = 14^2 + 2as, a \neq g$                                          |
| 2   |        | $20^2 = 14^2 + 2a15$                                       | A1         |                                                                       |
|     |        | $a = 6.8 \text{ m s}^{-2}$                                 | A1         |                                                                       |
|     |        |                                                            | [3]        |                                                                       |
|     | i      |                                                            | M1         | Uses $s=(u+v)t/2$ or a combination of two other formulae              |
|     |        | $6.4 = (u+5)/2 \times 1.6$                                 | A1         | $5^2 = u^2 + 2x6.4a$ M1                                               |
|     |        | $u = 3 \text{ m s}^{-1}$                                   | A1         | 5 = u + 1.6a M1                                                       |
|     |        |                                                            |            | Accurate equation in one variable A1                                  |
|     |        | 5 = 3+1.6 <i>a</i>                                         | M1         | $u = 3 \text{ m s}^{-1}$ A1                                           |
|     |        | $a = 1.25 \text{ m s}^{-2}$                                | A1         | $a = 1.25 \text{ m s}^{-2}$ A1                                        |
|     |        | OR                                                         | [5]        | Candidates may find <i>a</i> first (see below)                        |
|     |        | $6.4=5\times1.6-a1.6^2/2$                                  | M1         | $s = vt + -at^2/2$                                                    |
|     |        | $a = 1.25 \text{ m s}^{-2}$                                | A1         | Must be from $s = vt - at^2/2$                                        |
|     |        |                                                            |            |                                                                       |
|     |        |                                                            | M1         |                                                                       |
|     |        | $5 = u + 1.25 \times 1.6$                                  | A1         |                                                                       |
|     |        | $u = 3 \text{ m s}^{-1}$                                   | A1         | <b>SC</b> Do not accept $a = 1.25$ from $6.4=5\times1.6+a1.6^2/2$ but |
|     |        |                                                            |            | allow subsequent use of $a = 1.25$ in $5 = u + 1.25 \times 1.6$       |
|     | ii     | $1.25(m) = (m)g\text{CorS}\theta$                          | M1_        | Resolves $g$ or weight, $a \neq g$                                    |
|     |        | $1.25(m) = (m)g\cos\theta \ OR \ 1.25(m) = (m)g\sin\theta$ | A1√        | ft cv(1.25) from (i)                                                  |
|     |        | Angle with vertical = 82.7°                                | A1         | Must be angle with vertical                                           |
|     |        | -                                                          | [3]        |                                                                       |

| 3i $A\cos\theta + 4\cos\theta = 6$<br>$\cos\theta = 6/8$<br>$Angle (= 2\theta = 2\cos^{=1}0.75) = 82.8^{\circ}$<br>$OR$<br>$a = 97.2^{\circ}$ M1<br>A1<br>[4]<br>M1<br>[4]Resolve // ResultantAA1<br>[4]<br>M1<br>[4]<br>M1Cosine rule for triangle of forces<br>Cosine rule for triangle of forces<br>Cosine rule must give obtuse angle<br>M1<br>Angle = 82.8^{\circ}<br>$OR$<br>$6^2 = (4\sin\theta)^2 + (4+4\cos\theta)^2$<br>$36 = 16 + 32\cos\theta + 16$<br>$\cos\theta = 4/32$<br>$\theta = 82.8^{\circ}$ M1<br>M1<br>A1<br>$\theta = 90-7.2$<br>M1<br>$\theta = 90-7.2$<br>$A1$ Do not accept 82.8^{\circ} from incorrect w<br>$OR$<br>$6^2 = (4\cos\theta)^2 + (4+4\sin\theta)^2$<br>$36 = 16 + 32\sin\theta + 16$ hence $\theta = 7.2$<br>$M1$<br>$\theta = 82.8^{\circ}$ ii $mg = 6 + 3 OR mg = 4\cos(Ans(i) / 2) + 4\cos((Ans(i) / 2) + 3$<br>$m = 0.918$<br>Angle = 48.6°M1<br>$A1$<br>$B1\sqrt$ Must have signs correct<br>$Ft(90- cv(angle in (i)) / 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>v</i> orkina |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>v</i> orkina |
| Angle (= $2\theta = 2\cos^{-1}0.75$ ) = $82.8^{\circ}$ A1<br>[4]<br>[4]<br>M1Cosine rule for triangle of forces<br>Cosine rule must give obtuse angle<br>Cosine rule must give obtuse angle<br>M1<br>Angle = $82.8^{\circ}$ A1<br>M1<br>Do not accept $82.8^{\circ}$ from incorrect w<br>$OR$<br>$6^{2} = (4\sin\theta)^{2} + (4+4\cos\theta)^{2}$ M1<br>A1<br>$86 = 16 + 32\cos\theta + 16$<br>$\cos\theta = 4/32$ M1<br>$\theta = 82.8^{\circ}$ A1<br>M1<br>A1Do not accept $82.8^{\circ}$ from incorrect w<br>$OR$ ii $mg = 6 + 3 \ OR \ mg = 4\cos(\operatorname{Ans}(i)/2) + 4\cos((\operatorname{Ans}(i)/2) + 3)$<br>$m = 0.918$<br>Angle = $48.6^{\circ}$ M1<br>M1<br>M1Must have signs correct<br>A1<br>$B1$ ii $mg = 6 + 3 \ OR \ mg = 4\cos(\operatorname{Ans}(i)/2) + 4\cos((\operatorname{Ans}(i)/2) + 3)$<br>$m = 0.918$<br>Angle = $48.6^{\circ}$ M1<br>M1<br>B1Must have signs correct<br>A1<br>B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>v</i> orkina |
| Image: OR<br>$6^2 = 4^2 + 4^2 - 2x4x4\cos\alpha$<br>$a = 97.2^{\circ}$<br>Angle = 180 - 97.2<br>Angle = 82.8°<br>OR<br>$6^2 = (4\sin\theta)^2 + (4+4\cos\theta)^2$<br>$36 = 16 + 32\cos\theta + 16$<br>$\cos\theta = 4/32$<br>$\theta = 82.8^{\circ}$ Image: | <i>v</i> orkina |
| $OR$ $G^2 = 4^2 + 4^2 - 2x4x4\cos \alpha$ [4] $6^2 = 4^2 + 4^2 - 2x4x4\cos \alpha$ $a = 97.2^{\circ}$ Angle = 180 - 97.2A1Angle = 82.8° $OR$ $OR$ $G^2 = (4\sin\theta)^2 + (4+4\cos\theta)^2$ $36 = 16 + 32\cos\theta + 16$ $OR$ $\cos\theta = 4/32$ $\theta = 82.8^{\circ}$ $\theta = 82.8^{\circ}$ $M1$ $\theta = 82.8^{\circ}$ $M1$ $\theta = 82.8^{\circ}$ $\theta = 90-7.2$ $\theta = 82.8^{\circ}$ $\theta = 82.8^{\circ}$ $M1$ $H1$ $B = 82.8^{\circ}$ $H1$ $A = 82.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vorkina         |
| $6^2 = 4^2 + 4^2 - 2x4x4\cos\alpha$ M1Cosine rule for triangle of forces $a = 97.2^{\circ}$ Angle = $180 - 97.2$ Angle = $180 - 97.2$ Angle = $82.8^{\circ}$ M1Do not accept $82.8^{\circ}$ from incorrect w $OR$ $OR$ $OR$ $OR$ $OR$ $OR$ $OR$ $6^2 = (4\sin\theta)^2 + (4+4\cos\theta)^2$ $36 = 16 + 32\cos\theta + 16$ $OR$ $OR$ $\cos\theta = 4/32$ $\theta = 82.8^{\circ}$ $A1$ $36 = 16 + 32\sin\theta + 16$ hence $\theta = 7.2$ ii $mg = 6 + 3 \ OR \ mg = 4\cos(\operatorname{Ans}(i)/2) + 4\cos((\operatorname{Ans}(i)/2) + 3)$ M1Must have signs correct $M1$ $B = 90.7.2$ $A1$ $B1$ Ft(90- cv(angle in (i))/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vorkina         |
| $\alpha = 97.2^{\circ}$<br>Angle = $180 - 97.2$<br>Angle = $82.8^{\circ}$<br>$OR$<br>$6^2 = (4\sin\theta)^2 + (4+4\cos\theta)^2$<br>$36 = 16 + 32\cos\theta + 16$<br>$\cos\theta = 4/32$<br>$\theta = 82.8^{\circ}$ A1<br>A1<br>A1Do not accept $82.8^{\circ}$ from incorrect w<br>$OR$<br>$6^2 = (4\cos\theta)^2 + (4+4\sin\theta)^2$<br>$36 = 16 + 32\sin\theta + 16$<br>hence $\theta = 7.2$<br>A1<br>$\theta = 90-7.2$<br>A1<br>$\theta = 82.8^{\circ}$ ii $mg = 6 + 3 \ OR \ mg = 4\cos(\operatorname{Ans}(i)/2) + 4\cos((\operatorname{Ans}(i)/2) + 3)$<br>$m = 0.918$<br>Angle = $48.6^{\circ}$ M1<br>A1<br>A1<br>B1Must have signs correct<br>A1<br>B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>v</i> orkina |
| Angle = $180 - 97.2$ M1       Do not accept $82.8^{\circ}$ $OR$ $OR$ $OR$ $OR$ $6^2 = (4\sin\theta)^2 + (4+4\cos\theta)^2$ $A1$ Do not accept $82.8^{\circ}$ from incorrect w $36 = 16 + 32\cos\theta + 16$ $A1$ $6^2 = (4\cos\theta)^2 + (4+4\sin\theta)^2$ $\cos\theta = 4/32$ $\theta = 82.8^{\circ}$ $A1$ $36 = 16 + 32\sin\theta + 16$ hence $\theta = 7.2$ $\theta = 82.8^{\circ}$ $A1$ $\theta = 90-7.2$ $A1$ $\theta = 82.8^{\circ}$ .         ii $mg = 6 + 3 \ OR \ mg = 4\cos(Ans(i)/2) + 4\cos((Ans(i)/2) + 3)$ M1       Must have signs correct $m = 0.918$ Angle = $48.6^{\circ}$ $B1$ Ft(90- cv(angle in (i)) /2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /orkina         |
| Angle = $82.8^{\circ}$<br>$OR$ A1Do not accept $82.8^{\circ}$ from incorrect w<br>$OR$ $6^2 = (4\sin\theta)^2 + (4+4\cos\theta)^2$<br>$36 = 16 + 32\cos\theta + 16$<br>$\cos\theta = 4/32$<br>$\theta = 82.8^{\circ}$ A1 $6^2 = (4\cos\theta)^2 + (4+4\sin\theta)^2$<br>$36 = 16 + 32\sin\theta + 16$ hence $\theta = 7.2$<br>$\theta = 90-7.2$<br>$\theta = 82.8^{\circ}$ ii $mg = 6 + 3 \ OR \ mg = 4\cos(Ans(i) \ /2) + 4\cos((Ans(i) \ /2) + 3)$<br>$m = 0.918$<br>Angle = $48.6^{\circ}$ M1<br>$A1$<br>$B1$ Must have signs correct<br>$A1$<br>$B1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /orkina         |
| $OR^{\circ}$<br>$6^2 = (4\sin\theta)^2 + (4+4\cos\theta)^2$<br>$36 = 16 + 32\cos\theta + 16$<br>$\cos\theta = 4/32$<br>$\theta = 82.8^{\circ}$ M1<br>A1<br>A1<br>$\theta = 90-7.2$<br>$\theta = 82.8^{\circ}$ $OR^{\circ}$<br>$6^2 = (4\cos\theta)^2 + (4+4\sin\theta)^2$<br>$36 = 16 + 32\sin\theta + 16$ hence $\theta = 7.2$<br>$\theta = 90-7.2$<br>$\theta = 82.8^{\circ}$ ii $mg = 6 + 3 \ OR \ mg = 4\cos(\operatorname{Ans}(i)/2) + 4\cos((\operatorname{Ans}(i)/2) + 3)$<br>$m = 0.918$<br>Angle = 48.6°M1<br>A1<br>B1 $$ Must have signs correct<br>A1<br>B1 $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| $6^2 = (4\sin\theta)^2 + (4+4\cos\theta)^2$ M1 $6^2 = (4\cos\theta)^2 + (4+4\sin\theta)^2$ $36 = 16 + 32\cos\theta + 16$ A1 $36 = 16 + 32\sin\theta + 16$ hence $\theta = 7.2$ $\cos\theta = 4/32$ $\theta = 82.8^\circ$ M1 $\theta = 90-7.2$ $\theta = 82.8^\circ$ A1 $\theta = 82.8^\circ$ ii $mg = 6 + 3 \ OR \ mg = 4\cos(\operatorname{Ans}(i)/2) + 4\cos((\operatorname{Ans}(i)/2) + 3)$ M1 $m = 0.918$ A1A1Angle = 48.6^\circB1 $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 5             |
| $36 = 16 + 32\cos\theta + 16$ $36 = 16 + 32\sin\theta + 16$ hence $\theta = 7.2$ $\cos\theta = 4/32$ $\theta = 90-7.2$ $\theta = 82.8^{\circ}$ $\theta = 82.8^{\circ}$ <b>ii</b> $mg = 6 + 3 \ OR \ mg = 4\cos(\operatorname{Ans}(i)/2) + 4\cos((\operatorname{Ans}(i)/2) + 3)$ $m = 0.918$ A1         A1       A1         A1       B1 $$ Ft(90- cv(angle in (i)) /2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| ii $mg = 6 + 3 \ OR \ mg = 4\cos(Ans(i)/2) + 4\cos((Ans(i)/2) + 3)$<br>$m = 0.918$<br>Angle = 48.6°M1<br>$\theta = 90-7.2$<br>$\theta = 82.8°.$ $\theta = 90-7.2$<br>$\theta = 82.8°.$ iii $mg = 6 + 3 \ OR \ mg = 4\cos(Ans(i)/2) + 4\cos((Ans(i)/2) + 3)$<br>$A1B1Must have signs correctA1B1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )°              |
| $\theta = 82.8^{\circ}$ A1 $\theta = 82.8^{\circ}$ .ii $mg = 6 + 3 \ OR \ mg = 4\cos(Ans(i) / 2) + 4\cos((Ans(i) / 2) + 3)$ M1Must have signs correct $m = 0.918$ A1A1Angle = 48.6^{\circ}B1 $$ Ft(90- cv(angle in (i)) / 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·               |
| ii $mg = 6 + 3 \ OR \ mg = 4\cos(Ans(i) / 2) + 4\cos((Ans(i) / 2) + 3)$ M1       Must have signs correct $m = 0.918$ A1       A1         Angle = 48.6°       B1 $$ Ft(90- cv(angle in (i)) / 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| m = 0.918       A1         Angle = 48.6°       B1 $$ Ft(90- cv(angle in (i)) /2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| m = 0.918       A1         Angle = 48.6°       B1 $$ Ft(90- cv(angle in (i)) /2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| Angle = $48.6^{\circ}$ B1 $$ Ft(90- cv(angle in (i)) /2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 4 i 0.8x6 - 0.2x2 (=4.4) B1 Before momentum, signs different, r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 <i>a</i>     |
| M1 Uses momentum conservation, no g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 0.8x6 - 0.2x2 = 0.8x4 + 0.2v (= 4.4) A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| $v = 6 \text{ m s}^{-1}$ A1 B's "after" velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| ii After mass = 0.3+0.1 B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| 0.3x5(+0.1x0) = (0.3+0.1)v M1 No g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| $v = 3.75 \text{ m s}^{-1}$ A1 CD "after" velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| <b>iii</b> Least final speed $B = 4$ <b>B1</b> It cannot be less than the speed of A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4               |
| $0.2x6+(0.3+0.1)x3.75 = 0.2x(v \ge 4) + 0.4V$ M1 Momentum, <i>B</i> and <i>CD</i> particles, ess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| terms with distinct velocities. Letters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| should be checked against values u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 0.2x6+(0.3+0.1)x3.75 = 0.2x4+0.4V A1 $$ ft cv (v(i) and v(ii))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| $V = 4.75 \text{ m s}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |

| Que | estion | Expected Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mark                                     | Rationale/Additional Guidance                                                                                                                                                                                                                                                                                                                                    |
|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5   | i      | Perpendicular components of (2 <i>P</i> ) and +/-(5-P)<br>$(P-5)^2 + (2P)^2 = 25^2$<br>$5P^2 - 10P - 600 = 0$<br>P=12<br>$\cos\theta = (2x12)/25$ , $\tan\theta = (12-5)/2x12$ etc.<br>Angle with vertical = 16.3°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B1<br>M1<br>A1<br>M1<br>A1√<br>A1<br>[7] | Uses appropriate Pythagoras<br>Attempt to solve 3 term QE "=0"<br>Targets any relevant angle appropriately<br>ft cv( <i>P</i> )<br>Must be angle with vertical                                                                                                                                                                                                   |
|     | ii     | $R = +/-(3x9.8 - 2x12) OR R = +/-(3x9.8 - 25\cos(Ans(i)))$<br>R = 5.4  N (may be implied)<br>$12 - 5 - 0.15x5.4 = 3a OR 25\sin(cv(\theta(i)) - 0.15x5.4 = 3a)$<br>$a = 2.06 \text{ m s}^{-2}$<br>Direction East                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1*<br>A1√<br>D*M1<br>A1<br>B1<br>[5]    | Bracketed terms must have opposite signs<br>ft 29.4-2xcv( $P(i)$ ) OR 29.4 -25cos(cv( $\theta(i)$ )<br>N2L, cv(12) cv(5.4) should be acceptable<br>Allow bearing (0)90°                                                                                                                                                                                          |
| 6   | i      | T(before) = 0.2g = 1.96<br>$Fr = 0.4x0.2gcos30 (=0.67896)$<br>$0.2a = 0.2g - T$ Either correct $0.2a = T - 0.2gsin30 - 0.4x0.2gcos30$ Both correct $2T = 0.2g + 0.2gsin30 + 0.4x0.2gcos30$<br>$T = 1.81$ NDescription of the second | B1<br>B1<br>M1<br>A1<br>M1<br>A1<br>[6]  | Evaluation not needed<br>Evaluation not needed, but accept 0.68<br>$a \neq g$<br>$0.2g - T=T - 0.2g \sin 30 - 0.4x 0.2g \cos 30$ is M1A1<br>$0.4a=0.2g - 0.2g \sin 30 - 0.4x 0.2g \cos 30$ is M1A1<br>Finding expression (2) <i>T</i> from two simultaneous<br>equations in <i>a</i> and <i>T</i> . <i>a</i> = 0.7526 m s <sup>-2</sup> , but is not<br>required |
|     | ii     | THIS CANNOT BE SOLVED USING a(i)<br>0.2a = +/-(0.2gsin30 + 0.4x0.2gcos30)<br>a = +/-(8.2948)<br>$v^2 = 2x8.29(48)x0.8 \ OR \ 0 = u^2 - 2x8.29(48)x0.8$<br>$v = 3.64 \ m \ s^{-1}$ or $u = 3.64 \ m \ s^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1*<br>A1<br>A1<br>D*M1<br>A1<br>[5]     | N2L with Fr and Weight component of <i>P</i><br>Omitting <i>g</i> , M1*A0A0, D*M1A0 possible<br>Equations must lead to positive values for $u^2$ , $v^2$                                                                                                                                                                                                         |
|     | iii    | $R^2 = (0.2g\cos 30)^2 + (0.4x0.2g\cos 30)^2$<br>R=1.83 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1<br>A1<br>A1<br>[3]                    | Applies Pythagoras to Friction and Normal Reaction<br>Omitting <i>g</i> , M1A0A0 possible                                                                                                                                                                                                                                                                        |

| Que | stion | Expected Answer                                                                                                                                                                                                                                                                  | Mark                                       | Rationale/Additional Guidance                                                                                                                                                                                                                                                            |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | i     | A: $v=\int 0.18t  dt$<br>$v=0.18/2 t^2 (+c)$<br>$9=0.09t^2$<br>t=10                                                                                                                                                                                                              | M1*<br>A1<br>D*M1<br>A1<br>[4]             | Integration indicated by change in coefficient and increase in power                                                                                                                                                                                                                     |
|     | ii    | B: $v = d(Ut+0.08t^3) / dt$<br>$v = U+0.24t^2$<br>$9=U+0.24x5^2$<br>U = 3<br>$SB(5) = 3x5+0.08x5^3$<br>SB(5) = 25  m AG                                                                                                                                                          | M1*<br>D*M1<br>A1<br>A1<br>[4]             | Differentiation indicated by change in coefficient and<br>reduction in power<br>There are instances of solutions in which $SB(5) = 25$ is<br>used to show that $U=3$ , and then demonstrate that<br>SB(5) = 25. Such work can gain no marks.<br>u = 3 without any supporting work. MOA0. |
|     | iii   | A: $x=\int 0.09t^{2} dt$<br>$x=0.09t^{3}/3$<br>$x(16)=0.03x16^{3}$<br>x=122.88  (may be implied by later work)<br>122.88=25+10x9+(9+v)(x1)/2<br>$v=6.76 \text{ m s}^{-1}$<br>OR<br>$122.88-25-10x9 = 9x1+/-ax1^{2}/2$<br>Deceleration = 2.24 m s <sup>-2</sup><br>v = 9 - 2.24x1 | M1*<br>D*M1<br>A1<br>M1<br>A1<br>[5]<br>M1 | Integration of <i>v</i> ( <i>A</i> )<br>Accept 123                                                                                                                                                                                                                                       |
|     |       | $v = 6.76 \text{ m s}^{-1}$ <b>Total</b>                                                                                                                                                                                                                                         | A1<br>72                                   | $s = ut + - at^2/2$                                                                                                                                                                                                                                                                      |